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This paper considers the stability of the one-dimensional boundary layer generated by
sudden heating of an infinite vertical wall. A quasi-steady approximation is used to
analyse the asymptotic form of the lower branch of the neutral curve, corresponding
to disturbances of wavelength much greater than the boundary-layer width. This leads
to predictions of the critical wavenumber for neutral stability and the maximum phase
speed of the travelling waves. Results are obtained for a range of Prandtl numbers and
are compared with solutions of the full stability equations and with numerical
simulations and experimental observations of cavity flows driven by sudden heating of
the sidewalls.

1. Introduction

The flow induced adjacent to a vertical wall heated above the ambient temperature
is one of the fundamental heat and mass transfer mechanisms and has therefore a wide
application in industrial and geophysical heat transfer problems. The classical one-
dimensional solutions for the suddenly heated doubly infinite plate in a stationary
isothermal fluid have been available for many years, for a variety of thermal boundary
conditions including the sudden application of a constant or varying heat flux or
temperature at the wall (e.g. Goldstein & Briggs 1964). The steady flow adjacent to a
heated semi-infinite plate has been described using a similarity transformation of the
usual boundary-layer equations (Ostrach 1964), and although closed-form solutions
are not available, numerically generated solutions are well known.

Of particular interest is the development of this latter flow, which may be described
as follows (Siegel 1958) : at each fixed position downstream of the leading edge of the
plate the flow initially develops as though the wall were doubly infinite with one-
dimensional flow and temperature fields which depend only on the lateral distance from
the wall. After some finite time has elapsed, the presence of the leading edge is felt, and
a transition to the two-dimensional flow occurs. The transition may usually be
observed as an oscillatory modulation of the temperature time series, and the passage
of this transition region is usually referred to as the ‘ leading-edge effect ’.

A number of studies have attempted to describe the transition process, but largely
without success (e.g. Goldstein & Briggs 1964; Brown & Riley 1973; Ingham 1985). In
general terms, these papers have failed to accurately predict the speed at which the
transition region travels along the plate ; in all cases this speed has been based on
convective transport by the boundary-layer flow itself. In the Brown & Riley (1973)
and Ingham (1985) papers, this assumption was supported by noting that the character
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of the boundary-layer equations changed at a particular time for a given vertical
position: this allowed an estimate of the speed of the effect as it travelled along the
boundary layer. Ingham’s (1985) numerical calculations of the boundary-layer solution
for the constant temperature wall condition are in reasonable agreement with the
analytical prediction of Brown & Riley (1973) but differ significantly from both full
numerical simulations of the start-up flow in a side-heated cavity (Schladow 1990) and
from recent experimental results obtained by Graham (1995). Likewise, for the
constant-heat-flux wall condition the propagation speed observed in experiments by
Mahajan & Gebhart (1978) and Joshi & Gebhart (1987) is up to as much as twice the
speed predicted by analysis based on convective transport by the boundary layer. In
order to address this discrepancy, Armfield & Patterson (1992) used a stability analysis
of the developing, i.e., the one-dimensional, boundary layer, in the context of a
contained cavity flow, to show that a much better estimate was obtained from the
fastest phase speed of the spectrum of waves that travelled along the boundary layer
following perturbation by the leading-edge singularity. This maximum phase speed
occurred, for the case studied by Armfield & Patterson, at a wavenumber just less than
the lowest neutral wavenumber, i.e., just on the decaying side of the left-hand branch
of the neutral curve. Further, this model for the leading-edge effect also provided a
mechanism for the oscillatory modulation of the signal in the form of the amplified
group of travelling waves, and indeed the simulated and observed oscillations proved
to have a wavenumber consistent with the maximally amplified waves obtained from
the stability analysis.

This proposed connection between the leading-edge effect and the stability of the
one-dimensional boundary layer focused attention on the need to provide a more
detailed analysis of the stability properties of the boundary layer, and particularly of
the properties at the low-wavenumber end of the spectrum of travelling waves.
Although there have been a number of studies of various related configurations (e.g.
Gill & Davey 1969; Gebhart & Mahajan 1982; Joshi & Gebhart 1987; Krane &
Gebhart 1993), none of these addressed the particular problem of the low-wavenumber
phase and group velocities and amplification properties. These stability studies
naturally have a much wider application than to just the leading-edge effect, and there
is a range of results over the whole wavenumber spectrum. In this paper, however, we
focus on the small-wavenumber limit, and do not, except in passing, discuss the
implication for the leading-edge effect.

In §2 the full stability problem is formulated, and the one-dimensional base flow and
temperature fields are identified. The low-wavenumber limit is formulated in §3, and
asymptotic and numerical methods are established for the solution of the reduced set
of equations resulting from this limit in §4. The results from the numerical solutions
are given in §5, and are compared with the numerical solution of the full set of
equations in §6. In §7 we discuss the dependence of the results on the Prandtl number,
and in §8 we consider some of the implications of these results and indicate how they
will match with similar solutions at intermediate and high wavenumbers.

2. Formulation

The configuration under consideration is an infinite vertical plate, initially at
temperature T

!
immersed in a stationary isothermal fluid, also at temperature T

!
. At

time t¯ 0, the temperature of the plate is instantaneously increased to T
!
∆T, and

maintained at that temperature. The full equations of motion describing the resulting
motion and temperature fields are, with the usual Boussinesq assumption,
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where u*, �* are the velocities in the horizontal and vertical directions x*, y*
respectively, t* is the time, p* the pressure, T* the temperature, ρ

!
the density at

temperature T
!
, ν and κ the kinematic viscosity and thermal diffusivity of the fluid

respectively, β the coefficient of thermal expansion and g the acceleration due to
gravity.
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where h¯ (νκ}gβ∆T )"/$ is a characteristic length scale. Substitution into (2.1)–(2.7)
and elimination of the pressure yields a non-dimensional system for u, � and T which
has an exact one-dimensional solution (Goldstein & Briggs 1964) with u¯ 0 and

T¯T
B
(x, t)¯F(η), �¯ �

B
(x, t)¯ tV(η), (2.9)

where η¯x}t"/# and for Prandtl numbers Pr¯ ν}κ1 1,

F(η)¯ erfc (Pr"/#η}2), (2.10)

V(η)¯
4

Pr (Pr®1)
[i# erfc (η}2)®i# erfc (Pr"/#η}2)], (2.11)

where i# erfc is the second integral of the complementary error function.
We examine the stability of this basic time-dependent state to small perturbations by

writing
T¯T

B
(x, t)εRe [τ(x) eiα(y−ct

b
)], (2.12)

Ψ¯Ψ
B
(x, t)εRe [ψ(x) eiα(y−ct

b
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where Ψ is the stream function defined by
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with Ψ
B

the basic solution corresponding to �
B

and tb ¯ t®t
!

is the time measured
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relative to a fixed time t
!
" 0. We seek travelling wave solutions, consistent with

observation, such that the wavenumber α is real and c is complex. By assuming that
tb ' t

!
the base flow functions T

B
, Ψ{

B
and �

B
are evaluated in the stability analysis at

time t
!
, equivalent to a quasi-steady approximation in which the time scale for tracking

the disturbance is assumed short compared with the time scale for the growth of the
boundary layer. This effectively means that in forming the stability equations the time
t (which is retained in place of t

!
) becomes a parameter of the problem and the

linearized equations for the perturbation functions ψ(x) and τ(x) in (2.13) and (2.12)
are obtained as

ψiv®2α#ψ§α%ψ®iα[(�
B
®c) (ψ§®α#ψ)®�"

B
ψ]Pr−"τ«¯ 0, (2.15)

τ§®α#τ®iαPr [(�
B
®c) τ®T !

B
ψ]¯ 0, (2.16)

where primes denote differentiation with respect to x. The boundary conditions are

ψ¯ψ«¯ τ¯ 0 at x¯ 0, (2.17)

ψ,ψ«, τU 0 as xU¢. (2.18)

The system (2.15)–(2.18) is an eigenvalue problem for the complex eigenfunctions ψ
and τ, with complex eigenvalue c¯ c

r
ic

i
for a given wavenumber α. The only

parameters in the problem are the Prandtl number Pr and the non-dimensional time
t, which is contained in the base flow functions �

B
and T

B
. For fixed Pr therefore, the

control parameter is t.

3. The small-wavenumber limit

The eigenvalues obtained by solution of (2.15)–(2.18) give the relationship between
the wavenumber, the wave speed and the amplification of travelling waves in the
boundary layer. Some numerical solutions of the system have been previously obtained
(e.g. Armfield & Patterson 1992) but as discussed above there is particular interest in
the properties of the eigenvalues at small wavenumber, in the vicinity of the neutral
curve. The results obtained by Armfield & Patterson (1992, figure 11) indicate that for
small wavenumbers the left-hand branch of the neutral curve in the (t,α)-plane
asymptotes towards the α-axis, corresponding to large values of the parameter t.

In the limit as tU¢, the main features of long-wavelength disturbances are
described by a boundary-layer approximation to the stability equations in which

α¯ t−#αh , c¯ tch t−"/#ch
"
… . (3.1)

Here the scaling of c with t is dictated by the requirement that wave speeds are
comparable with the speed of the boundary layer, while the scaling of α ensures that
viscous effects remain important. The need for a correction term in c of relative order
t−$/# will become apparent below. On the lateral scale of the boundary layer, defined
by the coordinate η¯x}t"/# the eigenfunctions ψ and τ may be expanded as tU¢ in
the form

ψ¯ψh (η)t−$/#ψh
"
(η)…, τ¯ t−$/#τh (η)t−$τh

"
(η)…. (3.2)

The scaling of τ ensures that thermal effects are incorporated in a consistent manner.
Substitution into (2.15) and (2.16) shows that at leading order ψh and τh satisfy the

reduced system of equations

ψh iv®iαh [(V®ch )ψh §®V§ψh ]Pr−"τh «¯ 0, (3.3)

τh §®iαh Pr [(V®ch ) τh ®F «ψh ]¯ 0, (3.4)
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where primes now denote differentiation with respect to η. At the wall it follows from
the full boundary conditions (2.17) that

ψh ¯ψh «¯ τh ¯ 0 at η¯ 0, (3.5)

while at the outer edge, the boundary conditions become

ψh «U 0, τh U 0 as ηU¢. (3.6)

This outer condition requires some discussion. Equations (3.3) and (3.4) admit six
possible behaviours as ηU¢, two of which correspond to the linear form

ψh C bηa as ηU¢, (3.7)

and the other four of which are of exponential form. Two of the exponential forms are

(ψh , τh )C c³(1,yPrλ(λ#iαh ch )) e³λη, (3.8)

where λ¯ (αh rch rPr)"/# [cos ("
#
θh ®"

%
π)i sin ("

#
θh ®"

%
π)], (3.9)

with ch ¯ ch
r
ich

i
, θh ¯ arctan (ch

i
}ch

r
) ; rθh r! "

#
π. The other two exponential solutions are

defined by
(ψh , τh )C d³(1, 0) e³λη, (3.10)

where λ is defined by (3.9) with Pr set to unity ; a, b, c³ and d³ are constants.
For general complex values of ch , the boundary conditions (3.6) are equivalent to the

specification b¯ c+¯ d+¯ 0 so that solutions which grow linearly or exponentially
are excluded. This implies that the solution of equations (3.3) and (3.4) may be expected
to have the behaviour

ψh U a as ηU¢, (3.11)

whereas for the full stability problem ψU 0 at the outer edge. The explanation for the
apparent discrepancy lies in the existence of an inviscid region outside the boundary
layer where variations occur on a lateral scale comparable with the disturbance
wavelength. Here the appropriate lateral coordinate is

ζ¯x}t# (3.12)
and as tU¢,

ψ¯ψW (ζ )… , (3.13)

with the perturbation to the temperature field exponentially small. Equation (2.15)
becomes ψW §®αh #ψW ¯ 0 and the solution which matches with the behaviour (3.11) and
decays to zero as ζU¢ is

ψW ¯ a e−αh ζ. (3.14)

Note that had the linear form (3.7) been allowed with b1 0 then a solution would have
been required with ψW ¯ 0 at ζ¯ 0, which would have resulted in exponential growth
as ζU¢.

Apart from providing justification for the form of the outer boundary conditions for
the reduced problem, the outer region also provides a correction to the growth rate and
phase speed which is larger than that arising from the terms neglected in the stability
equations. Since ψW ¯ a®aαh ζO(ζ #) as ζU 0, it follows that the correction terms ψh

"
and τh

"
in (3.2) must satisfy the boundary conditions

ψh !
"
U®aαh , τh

"
U 0 as ηU¢. (3.15)

Thus the equations

ψh iv
"
®iαh [(V®ch )ψh "

"
®V§ψh

"
]Pr−" τh !

"
¯®iαh ch

"
ψh §, (3.16)

τh "
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®F «ψh

"
]¯®iαh Pr ch

"
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must be solved subject to (3.15) and the wall conditions

ψh
"
¯ψh !

"
¯ τh

"
¯ 0 at η¯ 0. (3.18)

It is readily established that a solution exists only if ch
"
is determined by the condition

ch
"
&

¢

!

(ψh §ψ̀Pr τh τ̀) dη¯αh ach ψ̀(¢), (3.19)

where ψ̀ and τ̀ are solutions to the adjoint system

ψ̀iv®iαh [(V®ch ) ψ̀]§iαh [V§ψ̀PrF «τ̀]¯ 0, (3.20)

τ̀§®iαh Pr (V®ch ) τ̀®Pr−" ψ̀«¯ 0, (3.21)

with ψ̀¯ ψ̀«¯ τ̀¯ 0 at η¯ 0, (3.22)

ψ̀«U 0, τ̀U 0 as ηU¢. (3.23)

It has been shown in this section that as tU¢ long-wave disturbances develop a
double-deck structure consisting of an inner region of thickness xC t"/#, comparable
with the width of the boundary layer, where the streamwise disturbance velocity is of
order εt−"/# and a much wider isothermal outer region of thickness xC t#, comparable
with the wavelength of the instability, where the disturbance velocity of order εt−#

generated at the edge of the inner layer decays to zero. The key properties of the
instability are determined from the coupled system (3.3)–(3.6) governing the velocity
and temperature fields of the disturbance in the inner region and solutions of this
system are considered next.

4. Solution of the reduced stability equations

Numerical and asymptotic methods have been used to obtain solutions to the
reduced system of equations (3.3) and (3.4). Numerical solutions were obtained
independently by two different methods. The first method was based on outward
integration of the equations from η¯ 0 to an outer boundary η¯ η¢ using a first-order
Euler scheme along with an orthonormalization procedure (Davey 1973) to maintain
accuracy. The asymptotic form of the outer boundary conditions was used to speed up
convergence and reduce the dependence on the value of η¢. The system of equations
is sixth order, and a 6¬6 transfer matrix can be formulated; this can be reduced in the
usual way to a 3¬3 matrix, the determinant of which must vanish to ensure a non-
trivial solution for the eigenfunctions. The vanishing of this determinant determines
the values of ch

r
and ch

i
for a given value of αh .

The second method used a more accurate fourth-order Runge–Kutta scheme to
integrate the equations inwards from η¢ to the wall. Here three solutions were
computed corresponding to the behaviour defined by (3.7), (3.8) and (3.10) with a, c−

and d− non-zero respectively. A linear combination of these and application of the
boundary conditions at η¯ 0 leads to a complex 3¬3 determinant whose zeros were
located using a Newton iteration procedure.

Results from these two procedures were found to be in excellent agreement for the
primary mode of instability, with the Euler method performing better at large values
of αh and the Runge–Kutta scheme better at small and moderate αh . The secondary
modes were mostly calculated with the Runge–Kutta scheme, but could equally well
have been obtained with the Euler method. Numerical accuracy checks consisted of
varying the step size in η and the value of η¢ ; in general a step size of ∆η¯ 0.02 and
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an outer boundary of η¢ ¯ 30 were found to be sufficient for the Runge–Kutta scheme,
although at small αh it was sometimes necessary to increase the value of η¢. It was also
necessary to extend the outer boundary for the calculations at small Pr described in §7.

A further check on the numerical solutions is provided by an analytical solution
which can be obtained in the asymptotic limit as αh U¢. Here the effects of viscosity
and thermal conductivity are confined mainly to the vicinity of a critical layer
surrounding the location η¯ η

m
of the maximum base flow velocity in the boundary

layer, and the phase speed of the disturbance approaches the maximum flow speed
V¯V

m
, a feature of long-wave instabilities identified by Drazin & Howard (1962, §6) in

the context of unbounded parallel inviscid flow. This behaviour was confirmed by Gill
& Davey (1969) for the small-wavenumber limit of the Rayleigh equation governing
inviscid disturbances in vertically stratified boundary layers and leads to a solution in
which the perturbation field is negligibly small in the region η! η

m
. A similar structure

applies here as αh U¢ although solutions of the reduced system (3.3)–(3.6) do not
match directly to solutions of a Rayleigh equation at higher wavenumbers but to those
of an intermediate-wavenumber regime which will be discussed in detail in a later
paper.

It is assumed that as αh U¢

ch ¯ c
!
αh −"/#c

"
αh −$/%c

#
… , (4.1)

and that in the region η" η
m

ψh ¯ψ
!
(η)αh −"/#ψ

"
(η)αh −$/%ψ

#
(η)… , (4.2)

τh ¯ τ
!
(η)αh −"/#τ

"
(η)αh −$/%τ

#
(η)… . (4.3)

Substitution into (3.3) and (3.4) gives the inviscid approximations

(V®c
!
)ψ"

!
®V§ψ

!
¯ 0, (V®c

!
) τ

!
®F «ψ

!
¯ 0. (4.4)

The requirement that ψ
!

remains finite as ηU¢ implies that ψ
!
¯V®c

!
, where the

multiplicative constant is taken as unity without loss of generality, and it follows that
τ
!
¯F «. The value of c

!
is fixed by the requirement that ψ

!
vanishes at η¯ η

m
, giving

c
!
¯V

m
. Higher-order terms in (4.2) and (4.3) can be found in a straightforward

manner. Making use of the requirement that ψh remains finite as ηU¢ and applying
the normalization ψh (¢)¯®ch implies that ψ

"
¯®c

"
, ψ

#
¯®c

#
. In the vicinity of η

m
,

the base flow velocity can be expanded in the form

V¯V
m
®(η®η

m
)#V

"
… , (4.5)

where V
"
¯®"

#
V§(η

m
)"0, and so

ψ
!
C®V

"
(η®η

m
)#, τ

!
UF

"
as ηU η

m
, (4.6)

where F
"
¯F «(η

m
).

Locally the solution is modified within a critical layer whose lateral scale ξ is
determined by the need for viscosity and thermal conduction to be significant. Thus

η¯ η
m
αh −"/%ξ (4.7)

and forms which match those in (4.6) as ξU¢ are

ψh ¯αh −"/#φ(ξ)… , τh ¯ θ(ξ)… , αh U¢. (4.8)

Substitution into (3.3) and (3.4) shows that φ and θ satisfy

φivi[(V
"
ξ #c

"
)φ§®2V

"
ξφ]¯ 0, (4.9)

θ§iPr [(V
"
ξ#c

"
) θF

"
φ]¯ 0 (4.10)
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and matching with the outer solution (4.2) requires that

φC®V
"
ξ #®c

"
o(ξ−"), θUF

"
as ξU¢. (4.11)

Here it is noted that the complementary solution of (4.9) proportional to ξ−" as ξU¢
must be excluded as it would not match with the outer form for ψ

#
. Assuming that the

disturbances die out as ξU®¢, it is also required that

φU 0, θU 0 as ξU®¢. (4.12)

The system for φ given by (4.9), (4.11) and (4.12) decouples from that for θ and
determines the eigenvalue c

"
, as follows. Equation (4.9) can be integrated once and the

transformations
φ¯V "/#

"
Φ(X ), c

"
¯V "/#

"
C, ξ¯V−"/%

"
X (4.13)

applied to obtain
Φ¨i[(X #C )Φ«®2XΦ]¯ 0. (4.14)

Defining Φ(")(X ) as the solution in X" 0 which is exponentially small as XU¢, it
follows that

Φ¯®X #®CAΦ(")(X ), X" 0; Φ¯BΦ(")(®X ), X! 0 (4.15)

and then continuity of Φ, Φ« and Φ§ at X¯ 0 leads to the requirement that B¯®A
and CΦ(")§(0)®2Φ(")(0)¯ 0. Setting

C¯ eiπ/%Cq , X¯ eiπ/)Xq , Φ(")¯Φq (Xq ), (4.16)

it follows that Cq are the real eigenvalues of the system

Φq ¨®(Xq #Cq )Φq «2Xq Φq ¯ 0, Xq & 0, (4.17)

Cq Φq §®2Φq ¯ 0, Xq ¯ 0; Φq CXq −(C
q
+&)/# e−X

q #
/#, Xq U¢, (4.18)

and these are determined as

Cq ¯ 1®4n, n¯ 0, 1, 2,… . (4.19)

This analytical result has been obtained previously by Cowley, Hocking & Tutty (1985)
in their examination of the stability of general boundary-layer profiles containing a
point of zero shear away from a wall.

This produces a set of eigenvalues of the reduced system as αh U¢ which is essentially
independent of the thermal perturbation field, the critical layer solution for θ in (4.10)
being generated by the known stream-function perturbation φ. However, another set
of eigenvalues exists associated with a set of thermal modes described by an alternative
balance to (4.8) in which

ψh ¯αh −"/#φ(ξ)… , τh ¯αh "/%θ(ξ)… , αh U¢. (4.20)

In this case φ and θ satisfy the system

θ§iPr (V
"
ξ#c

"
) θ¯ 0, (4.21)

φivi[(V
"
ξ#c

"
)φ§®2V

"
φ]Pr−"θ«¯ 0 (4.22)

and the size of τh in (4.20) now requires that the thermal field decays in both directions.
Such solutions can be found by applying the transformations

θ¯V "/#
"

Pr−"/#Θ(X ), c
"
¯V "/#

"
Pr−"/#C, ξ¯V−"/%

"
Pr−"/%X, (4.23)

to obtain Θ§i(X #C )Θ¯ 0; ΘU 0, XU³¢. (4.24)
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Defining Θ(") as the solution which is exponentially small as XU¢ it follows that

Θ¯AΘ(")(X ), X" 0; Θ¯BΘ(")(®X ), X! 0 (4.25)

and continuity of Θ and Θ« at X¯ 0 leads to two possibilities ; either A¯B and
Θ(")«(0)¯ 0, or A¯®B and Θ(")(0)¯ 0. Setting

C¯ eiπ/%Cq , X¯ eiπ/)Xq , Θ(")¯Θq (Xq ) (4.26)

then shows that Cq are the real eigenvalues of the system

Θq §®(Xq #Cq )Θq ¯ 0, Xq & 0, (4.27)

Θq ¯ 0 or Θq «¯ 0, Xq ¯ 0; Θq CXq ("−C
q
)/# e−X

q #
/#, Xq U¢. (4.28)

The required solutions are
Θq ¯U("

#
Cq ,o2Xq ), (4.29)

where U is the parabolic cylinder function (see, for example, Abramowitz & Stegun
1965, p. 687), and where

Cq ¯®1®2n, n¯ 0, 1, 2,… . (4.30)

With c
"
determined, equation (4.22) now determines the stream-function perturbation

φ, subject to the boundary conditions for φ given by (4.11) and (4.12).
In summary, two sets of asymptotic solutions of the reduced system exist as αh U¢

and have growth rates and phase speeds determined by

I: ch CV
m
(V

"
}2)"/# (i1)(1®4n)αh −"/#, n¯ 0, 1, 2,… , (4.31)

II : ch CV
m
®(V

"
}2Pr)"/# (i1)(12n)αh −"/#, n¯ 0, 1, 2,… . (4.32)

It is noted that only the leading branch (n¯ 0) of family I has ch
i
" 0 and therefore

corresponds to a disturbance with positive growth rate ; this is also the only disturbance
for which the phase speed ch

r
is greater than the maximum flow speed of the boundary

layer.

5. Numerical results for the small-wavenumber limit

Numerical solutions of the reduced system (3.3) and (3.4) have been obtained for
water (Pr¯ 7.5) and air (Pr¯ 0.71) over a wide range of wavenumbers. For other
Prandtl numbers, the calculations focused on obtaining the dependence of the
maximum phase speed and the wavenumber of neutral stability as a function of Prandtl
number. Figures 1(a) and 1(b) show the real and imaginary parts of ch as a function of
αh , for Pr¯ 7.5, for both families of disturbances, with n¯ 0, 1 for family I, and
n¯ 0, 1, 2, 3, 4 for family II. Figure 1(a) shows that the maximum scaled phase speed
achieved is ch

r
¯ 0±0142, at αh ¯ 91.1, and is, consistently with the observations, greater

than the maximum scaled boundary layer speed V
m

¯ 0±00795 by a factor of almost
two. From figure 1(b), the position of neutral stability, where ch

i
¯ 0, occurs at

αh ¯ 139.5, greater than the value for maximum phase speed. Positive growth rates
occur only for this n¯ 0 mode for family I, and only for values of αh greater than the
neutral stability value. All phase speeds for n" 0 in family I, and for all n in family II,
are less than the maximum flow velocity for all values of αh . The growth rates for these
cases are also negative.

Also in figure 1 are shown as dashed lines the asymptotic solutions (αh U¢) for each
of the modes. These are clearly in good agreement with the computed values, even for
relatively small values of αh . The n¯ 0 mode of family I has been computed out to
αh ¯ 2¬10%, and the solution lies almost exactly on the asymptotic value.

At the other extreme, all of the solution branches were found to terminate at a finite
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non-zero value of αh where the phase speed ch
r

becomes zero, and the growth rate
approaches a finite negative value. As ch

r
U 0, the exponential decay associated with

(3.8) and (3.10) is lost in favour of an oscillatory behaviour when ch
r
¯ 0, so that the

boundary condition (3.6) can no longer be satisfied. The loss at sufficiently small
wavenumbers of solutions that decay across the boundary layer is perhaps not
surprising; it is readily established from (3.3) and (3.4) that such solutions do not exist
with αh ch finite when αh ¯ 0, although solutions with bounded behaviour as ηU¢
always exist provided ch

i
! 0.

The behaviour of the real and imaginary parts of ch is summarized in figure 2, which
shows the paths of the various modes in the complex ch -plane, each path asymptoting
to a line drawn at 45° through the position ch

r
¯V

m
on the real axis.

Figure 3 shows the real and imaginary parts of the eigenfunctions at the neutral
stability point αh ¯ 139.5, normalized so that ψh (¢)¯ 1. The eigenfunctions have a
similar shape at the position of maximum phase speed.

6. Solution of the full stability equations

The full stability system (2.15)–(2.18) has been solved for a range of values of the
control parameter t, using the Euler method referred to above. Again, asymptotic
boundary conditions are used to ensure convergence of the solution for reasonable
values of an outer boundary x¯x¢, particularly at small α. Only the case Pr¯ 7.5 has
been solved.

It is straightforward to show that as xU¢ for fixed t the solutions to equations
(2.15) and (2.16) must behave as

ψCA eλ
"xB eλ

#xC eλ
$x, (6.1)

τC eλ
"x, (6.2)
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where λ
"
is the root of λ#

"
®α#iαPr c¯ 0 with negative real part, λ

#
¯®α and λ

$
is

the root of λ#

$
®α#iαc¯ 0 with negative real part ; in (6.1), B and C are arbitrary

constants and A is given by

A¯
®λ

"

Pr (λ%

"
®2α#λ#

"
α%iαc(λ#

"
®α#))

. (6.3)

Consequently, the boundary conditions for (2.15) and (2.16) enforced as xU¢ are

τ«®λ
"
τ¯ 0, (6.4)

ψ§®(λ
"
λ

#
)ψ«λ

#
λ
$
ψ®A(λ#

"
®λ

"
(λ

#
λ

$
)λ

#
λ
$
) τ¯ 0, (6.5)

ψ¨®(λ
"
λ

#
λ

$
)ψ§(λ

"
λ
#
λ

#
λ
$
λ

$
λ
"
)ψ«®λ

"
λ
#
λ
$
ψ¯ 0. (6.6)

The results of these computations are shown in figures 4(a) and 4(b) for a range of
values of t. In these figures, the results are plotted in terms of the reduced system
variables, rather than the variables defined in §2, for consistency. Figure 4(a) shows the
value of ch

r
as a function of αh , and figure 4(b) the amplification, given by αh ch

i
, for values

of t which increase from a value for which only a very small wavenumber range is
unstable, t¯ 75, to t¯ 525, in increments of 75. The first value is close to the usual
critical value for which an instability is first available. These figures show that the peak
phase speed occurs for wavenumbers less than the lowest neutral wavenumber at all
values of t computed. Further, the individual plots appear to coincide at small αh ,
consistent with the t−# scaling (3.1). Only the main mode of instability has been
calculated over the full range of values of αh .

Figures 5(a) and 5(b) show these results plotted on an expanded scale in the region
appropriate to the reduced problem. Here, the dashed lines are the solutions to the
reduced problem for those modes shown. Only the first modes from families I and II
have been calculated and are shown in these figures ; it is clear that, for these modes,
at small wavenumber the solutions of the full stability problem collapse on to the
solution of the reduced problem, confirming the indication suggested above. Some
additional solutions for other modes have also been calculated and again coincide with
the reduced problem solutions, but are not shown here.
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7. Dependence on Prandtl number

As indicated above, some numerical solutions of the reduced problem have been
obtained for air (Pr¯ 0±71). The dependence of ch

r
and ch

i
on αh for the first few modes

is shown in figures 6(a) and 6(b). The results are qualitatively similar to those for
Pr¯ 7.5, but with the thermal modes more suppressed, consistent with the inverse
dependence on Pr"/# in the asymptotic form (4.32).
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Figures 7(a) and 7(b) show the dependence of the main properties of the reduced
system on the Prandtl number, obtained for the range 0.02%Pr% 10. From figure
7(a) it is seen that the ratio of the maximum phase speed to the maximum boundary
layer velocity is not constant, but varies over a relatively small range, 1.29 at Pr¯ 0.1
to 1.81 at Pr¯ 10. A similarly small change in the ratio between the values of αh for
maximum phase speed and for neutral conditions is evident in figure 7(b). For Pr less
than about 0.2, the variation in this ratio is relatively large, but for Pr" 0.5 the ratio
is consistently close to 0.66. Evidently the behaviour of the reduced stability system is
qualitatively similar over a wide range of Prandtl numbers so long as the Prandtl
number is not too small.

8. Discussion

An investigation of the stability properties of the natural-convection boundary layer
on a doubly infinite vertical plate was prompted by the numerical and experimental
observations of travelling wave groups on the starting flow following sudden heating
of a vertical wall, both in the context of the semi-infinite plate and cavity flows. An
analysis of the stability properties at low wavenumber has shown that the peak phase
speed always occurs at a wavenumber less than the neutral value; that is, the fastest
travelling waves are decaying. Further, the peak velocity is greater than the fastest
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velocity available in the boundary layer by a factor of about two. As the wavenumber
increases in the primary mode of instability, the phase speed in this low-wavenumber
approximation approaches the maximum boundary layer velocity from above, i.e., the
phase speed is always greater than the boundary layer velocity, but asymptotes towards
it with increasing wavenumber.

The model for the ‘ leading-edge effect ’ put forward by Armfield & Patterson (1992)
suggested that the effect consisted of this group of waves, with the deviation from the
purely one-dimensional solution at a particular point beginning as the fastest wave
passes that point, followed by the spectrum of amplified waves. Thus the deviation
should be seen at a speed consistent with the fastest phase speed, and the following
oscillatory signal should be visible as the most-amplified wave in the amplified
spectrum. Although the latter condition cannot be confirmed with the present low-
wavenumber analysis, certainly the indications are that the fastest wave speed is of the
right order to match the experimental and numerical observations.

The group velocity of the travelling wave spectrum is given by

�
g
¯

¥ω
¥α

, (8.1)

where ω is the frequency, given by ω¯αc
r
. Thus �

g
¯ c

r
α ¥c

r
}¥α. At the peak phase

velocity, �
g
¯ c

r
, and at the neutral point �

g
is only slightly less than the maximum

phase velocity since ¥c
r
}¥α is small for α greater than the value for the maximum phase

velocity. The maximum group velocity occurs for values of α less than the value of
maximum phase velocity, where the amplification is negative. From figures 1(a) and
1(b), the first amplified wavenumber when Pr¯ 7.5 corresponds to αh ¯ 140 and the
group velocity at this wavenumber is given by �

g
¯ 0.0133t, compared with a peak

phase speed of 0.0142t and a peak boundary layer velocity of 0.008t.
Although the primary purpose of this paper is to establish the stability properties of

the thermal boundary layer at low wavenumber and not to expand on the leading-edge
effect, it is of interest to compare these values of velocity, i.e., the maximum phase
velocity and the first amplified group velocity, with the values estimated for the speed
of the leading-edge effect from Armfield & Patterson (1992). They obtained numerical
results for Boussinesq flow in a rectangular cavity of height H and temperature
difference ∆T

H
between the two sidewalls using a finite difference scheme with third-

order upwind differencing of the convective terms and a Crank–Nicolson time
integration. Their results for a Rayleigh number Ra¯ gβ∆T

H
H $}νκ can be compared

with the present theory by noting that ∆T
H

¯ 2∆T so that h}H¯ (Ra}2)−"/$, where h
is defined in §2. For a square cavity at mid-height with Ra¯ 6¬10), Pr¯ 7.5 and
t*¯ 4.7¬10−%H #}ν they estimated the speed of the leading-edge effect to be
�*¯ 2.2¬10$ν}H. Given that for these parameter values t¯ t*ν}h#¯ 2.11¬10#, this
corresponds in the present scaling to a non-dimensional vertical speed �¯ �*h}ν of
0.0156t, which compares favourably with the peak phase speed 0.0142t quoted above.
Recent experiments on a semi-infinite plate by Graham (1995), also for Pr¯ 7.5, give
a corresponding value, again in the present scaling, of 0.0139t.

A number of other non-amplifying modes have also been revealed in the analysis of
the small-wavenumber-limit problem. Although these evidently play no role in the
transition of the boundary layer, they are relevant in the sense that it has been possible
to show that the primary mode is the only mode which has any amplified spectrum, and
is also the only mode in which the wave speeds are greater than the base flow maximum
velocity for any value of wavenumber.

The information lacking in the present analysis involves the properties at larger
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wavenumbers, and specifically the properties of the amplified spectrum. Although we
are able to obtain this numerically, as shown in figures 4(a) and 4(b), it is also possible
to obtain more detailed analytical results. As mentioned previously, small-wavenumber
results discussed here do not directly match the lower asymptotic limit of the
accompanying Rayleigh problem associated with finite wavenumbers, and a third
intermediate-wavenumber regime is required. All of the modes identified here may be
shown to match across these three regimes, and the solutions to the full stability
equations to collapse on to the limiting results when the appropriate scalings are
applied. This will be the topic of a future paper. It is also hoped to address the more
difficult question of how the analysis could be improved to take proper account of the
temporal evolution of the basic state and its effect on both the stability of the flow and
the propagation of the leading-edge effect. Here we have focused on the temporal
stability problem on the grounds that at a given instant the disturbance is first manifest
as a wave travelling on the one-dimensional boundary-layer flow which is, therefore,
equally susceptible at any vertical location. However, in reality any disturbance
generated near the leading edge will amplify or decay both spatially and temporally,
suggesting that the results of a spatial stability analysis may also be of interest. Another
natural convective boundary layer flow where the present methods can be applied is the
buoyancy layer studied by Gill & Davey (1969). This stratified flow is relevant to the
steady-state structure that evolves in laterally heated cavities and in this case the
present method should lead to the determination of the peak phase velocity of long-
wave disturbances without the need to incorporate any quasi-steady assumption.
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